Term Information

Effective Term	
Previous Value	

Autumn 2016 Summer 2012

Course Change Information

What change is being proposed? (If more than one, what changes are being proposed?)

* Course number is decimalized

* Quarter course references in prerequisites removed

* Minor adjustments to the content description

* Minor adjustments to prerequisites

What is the rationale for the proposed change(s)?

Mathematics proposes to split all mathematics 7000-level courses into a .01 and .02 section. For a given course both sections will be taught in the same lecture but with different

expectations. The .01 section, for a given course, is open to pre-candidacy math students and non-math students, letter graded, and based on the same expectations as the original course.

The .02 section is open only to post-candidacy math students, S/U graded, and assessment

will in the form of oral presentations or more scientifically oriented write-ups rather than routine homework and exams as in the .01 section. This will allow post-

candidacy students to receive supplementary training without diverting too much time from their dissertations. Given our current population of students and the

post-candidacy arrangements the references to quarter courses have become obsolete and also confusing to newer students.

What are the programmatic implications of the proposed change(s)?

(e.g. program requirements to be added or removed, changes to be made in available resources, effect on other programs that use the course)?

The proposal does no impact pre-candidacy requirements and is resource neutral

Is approval of the requrest contingent upon the approval of other course or curricular program request? Yes

Please identify the pending request and explain its relationship to the proposed changes(s) for this course (e.g. cross listed courses, new or revised program)

Contingent on approval of 7121.02 new course request. See explanations above.

Is this a request to withdraw the course? No

General Information

Course Bulletin Listing/Subject Area	Mathematics
Fiscal Unit/Academic Org	Mathematics - D0671
College/Academic Group	Arts and Sciences
Level/Career	Graduate
Course Number/Catalog	7121.01
Previous Value	7121
Course Title	Algebraic Number Theory
Transcript Abbreviation	Algebr Numb Theory
Course Description	Algebraic integers, Dedekind domains, ideal class group; Galois theory of prime ideals, Frobenius automorphisms; geometry of numbers; cyclotomic fields, class field theory over Q; quadratic fields; local fields: ideles and adeles.

Previous Value

Algebraic integers, Dedekind domains, ideal class group; Galois theory of prime ideals, Frobenius automorphisms; geometry of numbers; cyclotomic fields, class field theory over Q; Gauss sums; quadratic fields; local fields; ideles and adeles. Fixed: 3

Semester Credit Hours/Units

Offering Information

Length Of Course	14 Week
Flexibly Scheduled Course	Never
Does any section of this course have a distance education component?	No
Grading Basis	Letter Grade
Repeatable	No
Course Components	Lecture
Grade Roster Component	Lecture
Credit Available by Exam	No
Admission Condition Course	No
Off Campus	Never
Campus of Offering	Columbus

Prerequisites and Exclusions

Prerequisites/Corequisites Previous Value Exclusions Previous Value Math 6112. 6112 (772) and 5221 (660). Not open to students with credit for 7121.02 Not open to students with credit for 780.

Cross-Listings

Cross-Listings

Subject/CIP Code

Subject/CIP Code	27.0102
Subsidy Level	Doctoral Course
Intended Rank	Doctoral

Requirement/Elective Designation

The course is an elective (for this or other units) or is a service course for other units

Course Details

Course goals or learning objectives/outcomes

• Students will acquire the theoretical understanding and problem solving skills in algebraic number theory that will enable them to use techniques in this field in conducting mathematical research in related areas.

Previous Value

Content Topic List	• Basic algebraic number theory: algebraic integers: rings of integers, Dedekind domains, unique factorization into
	prime ideals, ideal class group
	Galois theory of prime ideals: inertia groups, decomposition groups, Frobenius automorphisms
	• Geometry of numbers: finiteness of class group, Dirichlet's unit theorem, discriminant and different, Minkowski's
	constant
	• Cyclotomic fields, class field theory over Q (including statement of Kronecker-Weber, without proof); character sums,
	and exponential sums; quadratic fields
	• Local fields: absolute values, completions, local rings of integers, extension of absolute values, unramified
	extensions
	• Ideles and adeles
	 Survey of class field theory
Previous Value	• Basic algebraic number theory: algebraic integers: rings of integers, Dedekind domains, unique factorization into
	prime ideals, ideal class group
	• Galois theory of prime ideals: inertia groups, decomposition groups, Frobenius automorphisms
	• Geometry of numbers: finiteness of class group, Dirichlet's unit theorem, discriminant and different, Minkowski's
	constant
	• Cyclotomic fields, class field theory over Q (including statement of Kronecker-Weber, without proof); Gauss sums,
	character sums, and exponential sums; quadratic fields
	• Local fields: absolute values, completions, local rings of integers, extension of absolute values, unramified
	extensions
	• Ideles and adeles
	• Survey of class field theory
Attachments	● MATH_7121.01_Syllabus.pdf: 7121.01 Syllabus
	(Syllabus. Owner: Kerler, Thomas)

Comments

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Kerler, Thomas	12/01/2015 02:05 PM	Submitted for Approval
Approved	Husen,William J	12/01/2015 02:07 PM	Unit Approval
Approved	Haddad,Deborah Moore	12/01/2015 03:07 PM	College Approval
Pending Approval	Nolen,Dawn Vankeerbergen,Bernadet te Chantal Hanlin,Deborah Kay Jenkins,Mary Ellen Bigler Hogle,Danielle Nicole	12/01/2015 03:07 PM	ASCCAO Approval

Syllabus

Algebraic Number Theory

Instructor and Class Information

Lecturer: J. Cogdell Office: MW 632 Phone: 2-8678 Email: cogdell.1 **Course Number:**

Lecture Room: Lecture Times: 1:50 Office Hours:

About Course Goals

FORMAT

The course will meet three times a week for 55 minutes each meeting. Instructions will be mainly by lecture delivered by the instructor. It may also include occasional in-class discussion as well as short student presentations, particularly, by post-candidacy students.

DESCRIPTION & GOALS

7121 is a course in algebraic number theory. The main objects of study are number fields (finite extensions of the rational number field Q); their rings of integers, prime ideals, unique factorization into prime ideals, the ideal class group, and ramification; their invariants such as the the different and discriminant, the class number and the regulator. We use a combination of local and global techniques. In particular we will study local fields, the real and complex fields, and the various p-adic fields that arise as completions of number fields, and their relation with algebraic number fields. The remaining time will be dedicated to a survey of class field theory. Class field theory centers on the following type of question: for a number field k, describe the finite abelian extensions K/k, and particularly the splitting of primes in these extensions, in terms of data internal to k.

PREREQUISITES

Math 6112

Textbook

MAIN REFERENCE

Jim Milne: *Algebraic Number Theory*. Course notes from the University of Michigan. Available at http://www.jmilne.org/math/CourseNotes/ant.html.

ADDITIONAL REFERENCES

E. Artin: *Theory of Algebraic Numbers*, in *Exposition by Emil Artin: A Selection*, Edited by: Michael Rosen, AMS, Providence, 2006.

S. Lang, Algebraic Number Theory, (1970). Springer GTM 110.

J. Neukirch, Algebraic Number Theory (1992). Springer Grundlehren 322.

Assessments

HOMEWORK ASSIGNMENTS

There will be periodic, probably weekly, problem sets, and a final problem set in lieu of a final exam. These will be handed out in class.

CLASS PARTICIPATION AND ATTENDANCE

I expect attendance.

Grading

COURSE SCORE

A course score will be computed from the above assessments.

LETTER GRADES

Letter grades will be determined based on the course score. The approximate minimum scores letter grades are 90% for an "A or "A-", 80% for a "B+", 'B', or "B-", and 70% for a grade in the "C" range. The exact cut-off scores may vary depending on the difficulty of assignments.

Weekly Schedule

Week 1	Integrality, rings of integers in a number field
Week 2	The trace form; discriminants of number fields
Week 3	Dedekind domains; localization
Week 4	Prime factorization of ideals; fractional ideals
Week 5	Factorizations in extensions
Week 6	The discriminant and different
Week 7	Finiteness of the class number
Week 8	Class number & Minkowski's geometry of numbers
Week 9	Dirichlet unit theorem; the regulator
Week 10	Cyclotomic fields
Week 11	Valuations; local fields
Week 12	Hensel's Lemma & Krasner's Lemma
Week 13	Ramified and unramified extensions of local fields
Week 14	Class field theory

General Policies

ACADEMIC MISCONDUCT

It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term "academic misconduct" includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the

committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct (http://studentaffairs.osu.edu/info_for_students/csc.asp)."

DISABILITY SERVICES

Students with disabilities that have been certified by the Office for Disability Services will be appropriately accommodated and should inform the instructor as soon as possible of their needs. The Office for Disability Services is located in 150 Pomerene Hall, 1760 Neil Avenue; telephone 292-3307, TDD 292-0901; http://www.ods.ohio-state.edu/.